Authors: Natália Oliva-Teles, Maria Chiara de Stefano, Louise Gallagher, Severin Rakic, Paula Jorge, Goran Cuturilo, Silvana Markovska-Simoska, Isabella Borg, Jeanne Wolstencroft, Zeynep Tümer, Adrian J. Harwood, Yllka Kodra and David Skuse


Copy number variants (CNVs) play an important role in the genetic underpinnings of neuropsychiatric/neurodevelopmental disorders. The chromosomal region 16p11.2 (BP4–BP5) harbours both deletions and duplications that are associated in carriers with neurodevelopmental and neuropsychiatric conditions as well as several rare disorders including congenital malformation syndromes. The aim of this article is to provide a review of the current knowledge of the diverse neurodevelopmental disorders (NDD) associated with 16p11.2 deletions and duplications reported in published cohorts. A literature review was conducted using the PubMed/MEDLINE electronic database limited to papers published in English between 1 January 2010 and 31 July 2020, describing 16p11.2 deletions and duplications carriers’ cohorts. Twelve articles meeting inclusion criteria were reviewed from the 75 articles identified by the search. Of these twelve papers, eight described both deletions and duplications, three described deletions only and one described duplications only. This study highlights the heterogeneity of NDD descriptions of the selected cohorts and inconsistencies concerning accuracy of data reporting.

Authors: Danijela Drakulic, Srdjan Djurovic, Yasir Ahmed Syed, Sebastiano Trattaro, Nicolò Caporale, Anna Falk, Rivka Ofir, Vivi M. Heine, Samuel J. R. A. Chawner, Antonio Rodriguez-Moreno, Marianne B. M. van den Bree, Giuseppe Testa, Spyros Petrakis & Adrian J. Harwood


Patients diagnosed with chromosome microdeletions or duplications, known as copy number variants (CNVs), present a unique opportunity to investigate the relationship between patient genotype and cell phenotype. CNVs have high genetic penetrance and give a good correlation between gene locus and patient clinical phenotype. This is especially effective for the study of patients with neurodevelopmental disorders (NDD), including those falling within the autism spectrum disorders (ASD). A key question is whether this correlation between genetics and clinical presentation at the level of the patient can be translated to the cell phenotypes arising from the neurodevelopment of patient induced pluripotent stem cells (iPSCs).

Here, we examine how iPSCs derived from ASD patients with an associated CNV inform our understanding of the genetic and biological mechanisms underlying the aetiology of ASD. We consider selection of genetically characterised patient iPSCs; use of appropriate control lines; aspects of human neurocellular biology that can capture in vitro the patient clinical phenotype; and current limitations of patient iPSC-based studies. Finally, we consider how future research may be enhanced to maximise the utility of CNV patients for research of pathological mechanisms or therapeutic targets.

Open Access Int. J. Environ. Res. Public Health 2018, 15(8), 1644;

Yllka Kodra, Jérôme Weinbach, Manuel Posada-de-la-Paz, Alessio Coi, S. Lydie Lemonnier, David Van Enckevort, Marco Roos, Annika Jacobsen, Ronald Cornet, S. Faisal Ahmed, Virginie Bros-Facer, Veronica Popa, Marieke Van Meel, Daniel Renault, Rainald Von Gizycki, Michele Santoro, Paul Landais, Paola Torreri, Claudio Carta, Deborah Mascalzoni, Sabina Gainotti, Estrella Lopez, Anna Ambrosini, Heimo Müller, Robert Reis, Fabrizio Bianchi, Yaffa R. Rubinstein, Hanns Lochmüller and Domenica Taruscio.


Rare diseases (RD) patient registries are powerful instruments that help develop clinical research, facilitate the planning of appropriate clinical trials, improve patient care, and support healthcare management. They constitute a key information system that supports the activities of European Reference Networks (ERNs) on rare diseases. A rapid proliferation of RD registries has occurred during the last years and there is a need to develop guidance for the minimum requirements, recommendations and standards necessary to maintain a high-quality registry. In response to these heterogeneities, in the framework of RD-Connect, a European platform connecting databases, registries, biobanks and clinical bioinformatics for rare disease research, we report on a list of recommendations, developed by a group of experts, including members of patient organizations, to be used as a framework for improving the quality of RD registries. This list includes aspects of governance, Findable, Accessible, Interoperable and Reusable (FAIR) data and information, infrastructure, documentation, training, and quality audit. The list is intended to be used by established as well as new RD registries. Further work includes the development of a toolkit to enable continuous assessment and improvement of their organizational and data quality.